Saturday, October 17, 2009

What's new for 'Trypanosomatids' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message:

Sent on Saturday, 2009 Oct 17
Search kinetoplastids OR kinetoplastid OR Kinetoplastida OR "trypanosoma brucei" OR leishmania OR brucei OR leishmaniasis OR "African trypanosomiasis"
Click here to view complete results in PubMed. (Results may change over time.)
To unsubscribe from these e-mail updates click here.



PubMed Results
Items 1 -5 of 5

1: Proteomics. 2009 Oct 15. [Epub ahead of print]

Protein composition of Trypanosoma brucei Mitochondrial membranes.

Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA.

Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane and matrix; each harboring specific functions and structures. In this study, we used mass spectrometry (LC-MS/MS) to characterize the protein composition of Trypanosoma brucei mitochondrial membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mitochondrial membranes with high confidence, and 106 with moderate to low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mitochondrial membrane have putative roles in metabolic, energy generating, and transport processes, approximately 50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mitochondrial functions.

PMID: 19834910 [PubMed - as supplied by publisher]

2: PLoS Pathog. 2009 Oct;5(10):e1000628. Epub 2009 Oct 16.

The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V.

INRS-Institut Armand-Frappier and Centre for Host-Parasite Interactions, Laval, Québec, Canada.

We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galbeta1,4Manalpha1-PO(4) units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification.

PMID: 19834555 [PubMed - in process]

3: Lancet. 2009 Oct 13. [Epub ahead of print]

Human African trypanosomiasis.

Swiss Tropical Institute, Basel, Switzerland.

Human African trypanosomiasis (sleeping sickness) occurs in sub-Saharan Africa. It is caused by the protozoan parasite Trypanosoma brucei, transmitted by tsetse flies. Almost all cases are due to Trypanosoma brucei gambiense, which is indigenous to west and central Africa. Prevalence is strongly dependent on control measures, which are often neglected during periods of political instability, thus leading to resurgence. With fewer than 12 000 cases of this disabling and fatal disease reported per year, trypanosomiasis belongs to the most neglected tropical diseases. The clinical presentation is complex, and diagnosis and treatment difficult. The available drugs are old, complicated to administer, and can cause severe adverse reactions. New diagnostic methods and safe and effective drugs are urgently needed. Vector control, to reduce the number of flies in existing foci, needs to be organised on a pan-African basis. WHO has stated that if national control programmes, international organisations, research institutes, and philanthropic partners engage in concerted action, elimination of this disease might even be possible.

PMID: 19833383 [PubMed - as supplied by publisher]

4: Vaccine. 2009 Sep 18;27(41):5644-53. Epub 2009 Jul 25.Click here to read LinkOut

Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

Centro Interdisciplinar de Terapia Gênica (CINTERGEN), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, SP 04044-010, Brazil.

Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.

PMID: 19635607 [PubMed - indexed for MEDLINE]

5: Mol Biochem Parasitol. 2009 Nov;168(1):102-8. Epub 2009 Jul 23.Click here to read LinkOut

Glucose uptake in the mammalian stages of Trypanosoma cruzi.

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof Lineu Prestes 748, São Paulo, SP, Brazil.

Trypanosoma cruzi, the agent of Chagas' disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T. cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T. cruzi. The infective trypomastigotes showed the highest transport activity (V(max)=5.34+/-0.54 nmol/min per mg of protein; K(m)=0.38+/-0.01 mM) when compared to intracellular epimastigotes (V(max)=2.18+/-0.20 nmol/min per mg of protein; K(m)=0.39+/-0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T. cruzi.

PMID: 19631694 [PubMed - indexed for MEDLINE]

No comments:

Post a Comment