Thursday, October 13, 2011

What's new for 'Trypanosomatids' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message:

Sent on Thursday, 2011 Oct 13
Search kinetoplastids OR kinetoplastid OR Kinetoplastida OR "trypanosoma brucei" OR leishmania OR brucei OR leishmaniasis OR "African trypanosomiasis"
Click here to view complete results in PubMed. (Results may change over time.)
To unsubscribe from these e-mail updates click here.



PubMed Results
Items 1 - 5 of 5

1. PLoS Negl Trop Dis. 2011 Oct;5(10):e1345. Epub 2011 Oct 4.

Human Cellular Immune Response to the Saliva of Phlebotomus papatasi Is Mediated by IL-10-Producing CD8+ T Cells and Th1-Polarized CD4+ Lymphocytes.

Abdeladhim M, Ben Ahmed M, Marzouki S, Belhadj Hmida N, Boussoffara T, Belhaj Hamida N, Ben Salah A, Louzir H.

Source

Department of Clinical Immunology, Pasteur Institute of Tunis, Tunis, Tunisia.

Abstract

BACKGROUND:

The saliva of sand flies strongly enhances the infectivity of Leishmania in mice. Additionally, pre-exposure to saliva can protect mice from disease progression probably through the induction of a cellular immune response.

METHODOLOGY/PRINCIPAL FINDINGS:

We analysed the cellular immune response against the saliva of Phlebotomus papatasi in humans and defined the phenotypic characteristics and cytokine production pattern of specific lymphocytes by flow cytometry. Additionally, proliferation and IFN-γ production of activated cells were analysed in magnetically separated CD4+ and CD8+ T cells. A proliferative response of peripheral blood mononuclear cells against the saliva of Phlebotomus papatasi was demonstrated in nearly 30% of naturally exposed individuals. Salivary extracts did not induce any secretion of IFN-γ but triggered the production of IL-10 primarily by CD8+ lymphocytes. In magnetically separated lymphocytes, the saliva induced the proliferation of both CD4+ and CD8+ T cells which was further enhanced after IL-10 blockage. Interestingly, when activated CD4+ lymphocytes were separated from CD8+ cells, they produced high amounts of IFN-γ.

CONCLUSION:

Herein, we demonstrated that the overall effect of Phlebotomus papatasi saliva was dominated by the activation of IL-10-producing CD8+ cells suggesting a possible detrimental effect of pre-exposure to saliva on human leishmaniasis outcome. However, the activation of Th1 lymphocytes by the saliva provides the rationale to better define the nature of the salivary antigens that could be used for vaccine development.

PMID:
21991402
[PubMed - in process]
2. PLoS Negl Trop Dis. 2011 Oct;5(10):e1320. Epub 2011 Oct 4.

Functional expression of parasite drug targets and their human orthologs in yeast.

Bilsland E, Pir P, Gutteridge A, Johns A, King RD, Oliver SG.

Source

Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.

Abstract

BACKGROUND:

The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.

METHODOLOGY/PRINCIPAL FINDINGS:

Using pyrimethamine/dihydrofolate reductase (DHFR) as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi) to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p) expressing yeast ((Sc)DFR1), human ((Hs)DHFR), Schistosoma ((Sm)DHFR), and Trypanosoma ((Tb)DHFR and (Tc)DHFR) DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((Pf)DHFR and (Pv)DHFR) DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pf)dhfr(51I,59R,108N)) are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs) and N-myristoyl transferases (NMTs).

CONCLUSIONS/SIGNIFICANCE:

We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

PMID:
21991399
[PubMed - in process]
3. PLoS Negl Trop Dis. 2011 Oct;5(10):e1284. Epub 2011 Oct 4.

Incidence of Symptomatic and Asymptomatic Leishmania donovani Infections in High-Endemic Foci in India and Nepal: A Prospective Study.

Ostyn B, Gidwani K, Khanal B, Picado A, Chappuis F, Singh SP, Rijal S, Sundar S, Boelaert M.

Source

Institute of Tropical Medicine, Antwerp, Belgium.

Abstract

Incidence of Leishmania donovani infection and Visceral Leishmaniasis (VL) was assessed in a prospective study in Indian and Nepalese high-endemic villages. DAT-seroconversion was used as marker of incident infection in 3 yearly surveys. The study population was followed up to month 30 to identify incident clinical cases. In a cohort of 9034 DAT-negative individuals with neither active signs nor history of VL at baseline, 42 VL cases and 375 asymptomatic seroconversions were recorded in the first year, giving an infection∶disease ratio of 8.9 to 1. In the 18 months' follow-up, 7 extra cases of VL were observed in the seroconverters group (N = 375), against 14 VL cases among the individuals who had not seroconverted in the first year (N = 8570) (RR = 11.5(4.5<RR<28.3)). Incident asymptomatic L. donovani infection in VL high-endemic foci in India and Nepal is nine times more frequent than incident VL disease. About 1 in 50 of these new but latent infections led to VL within the next 18 months.

PMID:
21991397
[PubMed - in process]
4. PLoS One. 2011;6(10):e25666. Epub 2011 Oct 3.

Ab Initio Identification of Novel Regulatory Elements in the Genome of Trypanosoma brucei by Bayesian Inference on Sequence Segmen tation.

Kelly S, Wickstead B, Maini PK, Gull K.

Source

Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.

Abstract

BACKGROUND:

The rapid increase in the availability of genome information has created considerable demand for both comparative and ab initio predictive bioinformatic analyses. The biology laid bare in the genomes of many organisms is often novel, presenting new challenges for bioinformatic interrogation. A paradigm for this is the collected genomes of the kinetoplastid parasites, a group which includes Trypanosoma brucei the causative agent of human African trypanosomiasis. These genomes, though outwardly simple in organisation and gene content, have historically challenged many theories for gene expression regulation in eukaryotes.

METHODOLOGY/PRINCIPLE FINDINGS:

Here we utilise a Bayesian approach to identify local changes in nucleotide composition in the genome of T. brucei. We show that there are several elements which are found at the starts and ends of multicopy gene arrays and that there are compositional elements that are common to all intergenic regions. We also show that there is a composition-inversion element that occurs at the position of the trans-splice site.

CONCLUSIONS/SIGNIFICANCE:

The nature of the elements discovered reinforces the hypothesis that context dependant RNA secondary structure has an important influence on gene expression regulation in Trypanosoma brucei.

PMID:
21991330
[PubMed - in process]
5. J Infect Dis. 2011 Oct 11. [Epub ahead of print]

Opposing Biological Functions of Tryptophan Catabolizing Enzymes During Intracellular Infection.

Divanovic S, Sawtell NM, Trompette A, Warning JI, Dias A, Cooper AM, Yap GS, Arditi M, Shimada K, Duhadaway JB, Prendergast GC, Basaraba RJ, Mellor AL, Munn DH, Aliberti J, Karp CL.

Source

Division of Molecular Immunology.

Abstract

Recent studies have underscored physiological and pathophysiological roles for the tryptophan-degrading enzyme indolamine 2,3-dioxygenase (IDO) in immune counterregulation. However, IDO was first recognized as an antimicrobial effector, restricting tryptophan availability to Toxoplasma gondii and other pathogens in vitro. The biological relevance of these findings came under question when infectious phenotypes were not forthcoming in IDO-deficient mice. The recent discovery of an IDO homolog, IDO-2, suggested that the issue deserved reexamination. IDO inhibition during murine toxoplasmosis led to 100% mortality, with increased parasite burdens and no evident effects on the immune response. Similar studies revealed a counterregulatory role for IDO during leishmaniasis (restraining effector immune responses and parasite clearance), and no evident role for IDO in herpes simplex virus type 1 (HSV-1) infection. Thus, IDO plays biologically important roles in the host response to diverse intracellular infections, but the dominant nature of this role-antimicrobial or immunoregulatory-is pathogen-specific.

PMID:
21990421
[PubMed - as supplied by publisher]

No comments:

Post a Comment