Saturday, May 7, 2011

What's new for 'Trypanosomatids' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message:

Sent on Saturday, 2011 May 07
Search kinetoplastids OR kinetoplastid OR Kinetoplastida OR "trypanosoma brucei" OR leishmania OR brucei OR leishmaniasis OR "African trypanosomiasis"
Click here to view complete results in PubMed. (Results may change over time.)
To unsubscribe from these e-mail updates click here.



PubMed Results
Items 1 - 2 of 2

1. Med Microbiol Immunol. 2011 May 6. [Epub ahead of print]

The protective Th1 response in mice is induced in the T-cell zone only three weeks after infection with Leishmania major and not during early T-cell activation.

Barthelmann J, Nietsch J, Blessenohl M, Laskay T, van Zandbergen G, Westermann J, Kalies K.

Source

Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany.

Abstract

The protozoan parasite Leishmania spp. causes clinical pictures ranging in severity from spontaneously healing skin ulcers to systemic disease. The immune response associated with healing involves the differentiation of IFNγ-producing Th1 cells, whereas the non-healing phenotype is associated with IL4-producing Th2 cells. The widespread assumption has been that the T-cell differentiation that leads to a healing or non-healing phenotype is established at the time of T-cell activation early after infection. By selectively analyzing the expression of cytokine genes in the T-cell zones of lymph nodes of resistant (Th1) C57BL/6 mice and susceptible (Th2) BALB/c mice during an infection with Leishmania major in vivo, we show that the early T-cell response does not differ between C57BL/6 mice and BALB/c mice. Instead, Th1/Th2 polarization appears suddenly 3 weeks after infection. At the same time point, the number of parasites increases in lymph nodes of both mouse strains, but about 100-fold more in susceptible BALB/c mice. We conclude that the protective Th1 response in C57BL/6 mice is facilitated by the capacity of their innate effector cells to keep parasite numbers at low levels.

PMID:
21547563
[PubMed - as supplied by publisher]
2. J Microencapsul. 2011;28(4):301-10.

Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis.

Kunjachan S, Gupta S, Dwivedi AK, Dube A, Chourasia MK.

Source

Division of Pharmaceutics, Central Drug Research Institute , CSIR, Lucknow 226 001, Uttar Pradesh , India.

Abstract

The potential of chitosan microparticles as a carrier of doxorubicin for the treatment of visceral leishmaniasis was evaluated by macrophage-mediated drug targeting approach. Cationic charge of doxorubicin was masked by complexing it with dextran sulphate (a poly anion) in order to facilitate its incorporation into cationic chitosan microparticles. Prior to in vitro and in vivo studies, characterization studies were carried out systematically: particle size (∼1.049 µm), surface morphology (fluorescence microscopy - spherical structured microparticles), Fourier transform infrared spectroscopy (to characterize effective cross-linking) and differential scanning calorimetry. In vitro studies were carried out in J774.1 in order to check the effective endocytotic uptake of microparticles by macrophages. In vivo studies were conducted in Syrian golden hamsters as per well-established protocols and the results drawn from in vivo studies displayed substantial reduction in leishmanial parasite load for doxorubicin-encapsulated chitosan microparticles: ∼78.2 ± 10.4%, when compared to the control (free doxorubicin): 33.3 ± 2.4%.

PMID:
21545321
[PubMed - in process]

No comments:

Post a Comment