Thursday, January 12, 2012

What's new for 'Trypanosomatids' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message:

Sent on Thursday, 2012 January 12
Search: kinetoplastids OR kinetoplastid OR Kinetoplastida OR "trypanosoma brucei" OR leishmania OR brucei OR leishmaniasis OR "African trypanosomiasis"

Click here to view complete results in PubMed (Results may change over time.)
To unsubscribe from these e-mail updates click here.


PubMed Results
Items 1 - 5 of 5

1. PLoS One. 2012;7(1):e29702. Epub 2012 Jan 3.

Deep evolutionary conservation of an intramolecular protein kinase activation mechanism.

Han J, Miranda-Saavedra D, Luebbering N, Singh A, Sibbet G, Ferguson MA, Cleghon V.

Source

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.

Abstract

DYRK-family kinases employ an intramolecular mechanism to autophosphorylate a critical tyrosine residue in the activation loop. Once phosphorylated, DYRKs lose tyrosine kinase activity and function as serine/threonine kinases. DYRKs have been characterized in organisms from yeast to human; however, all entities belong to the Unikont supergroup, only one of five eukaryotic supergroups. To assess the evolutionary age and conservation of the DYRK intramolecular kinase-activation mechanism, we surveyed 21 genomes representing four of the five eukaryotic supergroups for the presence of DYRKs. We also analyzed the activation mechanism of the sole DYRK (class 2 DYRK) present in Trypanosoma brucei (TbDYRK2), a member of the excavate supergroup and separated from Drosophila by ∼850 million years. Bioinformatics showed the DYRKs clustering into five known subfamilies, class 1, class 2, Yaks, HIPKs and Prp4s. Only class 2 DYRKs were present in all four supergroups. These diverse class 2 DYRKs also exhibited conservation of N-terminal NAPA regions located outside of the kinase domain, and were shown to have an essential role in activation loop autophosphorylation of Drosophila DmDYRK2. Class 2 TbDYRK2 required the activation loop tyrosine conserved in other DYRKs, the NAPA regions were critical for this autophosphorylation event, and the NAPA-regions of Trypanosoma and human DYRK2 complemented autophosphorylation by the kinase domain of DmDYRK2 in trans. Finally, sequential deletion analysis was used to further define the minimal region required for trans-complementation. Our analysis provides strong evidence that class 2 DYRKs were present in the primordial or root eukaryote, and suggest this subgroup may be the oldest, founding member of the DYRK family. The conservation of activation loop autophosphorylation demonstrates that kinase self-activation mechanisms are also primitive.

PMID:
22235329
[PubMed - in process]
2. PLoS One. 2012;7(1):e25700. Epub 2012 Jan 3.

Three-Dimensional Structure of the Trypanosome Flagellum Suggests that the Paraflagellar Rod Functions as a Biomechanical Spring.

Hughes LC, Ralston KS, Hill KL, Zhou ZH.

Source

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America.

Abstract

Flagellum motility is critical for normal human development and for transmission of pathogenic protozoa that cause tremendous human suffering worldwide. Biophysical principles underlying motility of eukaryotic flagella are conserved from protists to vertebrates. However, individual cells exhibit diverse waveforms that depend on cell-specific elaborations on basic flagellum architecture. Trypanosoma brucei is a uniflagellated protozoan parasite that causes African sleeping sickness. The T. brucei flagellum is comprised of a 9+2 axoneme and an extra-axonemal paraflagellar rod (PFR), but the three-dimensional (3D) arrangement of the underlying structural units is poorly defined. Here, we use dual-axis electron tomography to determine the 3D architecture of the T. brucei flagellum. We define the T. brucei axonemal repeating unit. We observe direct connections between the PFR and axonemal dyneins, suggesting a mechanism by which mechanochemical signals may be transmitted from the PFR to axonemal dyneins. We find that the PFR itself is comprised of overlapping laths organized into distinct zones that are connected through twisting elements at the zonal interfaces. The overall structure has an underlying 57nm repeating unit. Biomechanical properties inferred from PFR structure lead us to propose that the PFR functions as a biomechanical spring that may store and transmit energy derived from axonemal beating. These findings provide insight into the structural foundations that underlie the distinctive flagellar waveform that is a hallmark of T. brucei cell motility.

PMID:
22235240
[PubMed - in process]
3. Biochim Biophys Acta. 2012 Jan 3. [Epub ahead of print]

Substrate inhibition and allosteric regulation by heparan sulfate of Trypanosoma brucei cathepsin L.

Costa TF, Reis FC, Lima AP.

Abstract

The cysteine protease brucipain is an important drug target in the protozoan Trypanosoma brucei, the causative agent of both Human African trypanosomiasis and Animal African trypanosomiasis. Brucipain is closely related to mammalian cathepsin L and currently used as a framework for the development of inhibitors that display anti-parasitic activity. We show that recombinant brucipain lacking the C-terminal extension undergoes inhibition by the substrate benzyloxycarbonyl-FR-7-amino-4-methylcoumarin at concentrations above the K(m), but not by benzyloxycarbonyl-VLR-7-amino-4-methylcoumarin. The allosteric modulation exerted by the substrate is controlled by temperature, being apparent at 25°C but concealed at 37°C. The behavior of the enzyme in vitro can be explained by discrete conformational changes caused by the shifts in temperature that render it less susceptible to substrate inhibition. Enzyme inhibition by the di-peptydyl substrate impaired the degradation of human fibrinogen at 25°C, but not at 37°C. We also found that heparan sulfate acts as a natural allosteric modulator of the enzyme through interactions that prevent substrate inhibition. We propose that brucipain shifts between an active and an inactive form as a result of temperature-dependent allosteric regulation.

Copyright © 2011. Published by Elsevier B.V.

PMID:
22234330
[PubMed - as supplied by publisher]
4. J Enzyme Inhib Med Chem. 2012 Jan 11. [Epub ahead of print]

New protein farnesyltransferase inhibitors in the 3-arylthiophene 2-carboxylic acid series: diversification of the aryl moiety by sol id-phase synthesis.

Lethu S, Bosc D, Mouray E, Grellier P, Dubois J.

Source

Institut de Chimie des Substances Naturelles, CNRS, Centre de Recherche de Gif , Gif sur Yvette , France.

Abstract

A new synthetic pathway was devised to reach tetrasubstituted 3-arylthiophene 2-carboxylic acids in a three-step solid-phase synthesis. This very efficient methodology provided more than 20 new compounds that were evaluated for their ability to inhibit protein farnesyltransferase from different species as well as Trypanosoma brucei and Plasmodium falciparum proliferation.

PMID:
22233543
[PubMed - as supplied by publisher]
5. PLoS Negl Trop Dis. 2011 Sep;5(9):e1314. Epub 2011 Sep 6.

Impact of aetiological treatment on conventional and multiplex serology in chronic Chagas disease.

Viotti R, Vigliano C, Alvarez MG, Lococo B, Petti M, Bertocchi G, Armenti A, De Rissio AM, Cooley G, Tarleton R, Laucella S.

Source

Chagas Disease and Heart Failure Section, Cardiology Department, Hospital Eva Perón, San Martín, Buenos Aires, Argentina. rviotti@arnet.com.ar

Abstract

BACKGROUND:

The main criterion for treatment effectiveness in Chagas Disease has been the seronegative conversion, achieved many years post-treatment. One of the main limitations in evaluating treatment for chronic Chagas disease is the lack of reliable tests to ensure parasite clearance and to examine the effects of treatment. However, declines in conventional serological titers and a new multiplex assay can be useful tools to monitor early the treatment impact.

METHODOLOGY/PRINCIPAL FINDINGS:

Changes in antibody levels, including seronegative conversion as well as declines in titers, were serially measured in 53 benznidazole-treated and 89 untreated chronic patients in Buenos Aires, Argentina with a median follow-up of 36 months. Decrease of titers (34/53 [64%] treated vs. 19/89 [21%] untreated, p<0.001) and seronegative conversion (21/53, [40%] treated vs. 6/89, [7%] untreated, p<0.001) in at least one conventional serological test were significantly higher in the benznidazole-treated group compare with the untreated group. When not only complete seronegative conversion but also seronegative conversion on 2 tests and the decreases of titers on 2 or 3 tests were considered, the impact of treatment on conventional serology increased from 21% (11/53 subjects) to 45% (24/53 subjects). A strong concordance was found between the combination of conventional serologic tests and multiplex assay (kappa index 0.60) to detect a decrease in antibody levels pos-treatment.

CONCLUSIONS/SIGNIFICANCE:

Treatment with benznidazole in subjects with chronic Chagas disease has a major impact on the serology specific for T. cruzi infection in a shorter follow-up period than previously considered, reflected either by a complete or partial seronegative conversion or by a significant decrease in the levels of T. cruzi antibodies, consistent with a possible elimination or reduction of parasite load.

PMCID: PMC3167788
Free PMC Article
PMID:
21909451
[PubMed - indexed for MEDLINE]
Related citations
Click here to read Click here to read

No comments:

Post a Comment